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ABSTRACT 
This paper is devoted to fractional q-derivative of special functions. To begin with the theorem on term by term q-

fractional differentiation has been derived. Fractional q-differentiation of new generalization of Generalized M-series 

has been obtained.    
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INTRODUCTION 

q-Analogue of Differential Operator  

Al-Salam [3], has given the q-analogue of differential operator as 

 

𝐷𝑞𝑓(𝑥) =
𝑓(𝑥𝑞) − 𝑓(𝑥)

𝑥(𝑞 − 1)
                                                                                              (1.1) 

 

This is an inverse of the q-integral operator defined as 

 

∫ 𝑓(𝑡) 𝑑(𝑡: 𝑞)

∞

𝑥

= 𝑥(1 − 𝑞) ∑ 𝑞−𝑘

∞

𝑘=1

𝑓(𝑥𝑞−𝑘)                                                   (1.2) 

 

WHERE 0 < |𝑞| < 1 

 

FRACTIONAL Q-DERIVATIVE OF ORDER𝜶: 

THE FRACTIONAL Q-DERIVATIVE OF ORDER 𝛼 IS DEFINED AS  

 

𝑫𝒙 ,𝒒
𝜶 𝒇(𝒙) =

𝟏

𝚪𝐪(−𝜶)
∫(𝒙 − 𝒚𝒒)−𝜶−𝟏

𝒙

𝟎

𝒇(𝒚)𝒅(𝒚; 𝒒)                                                       (𝟏. 𝟐. 𝟏) 

WHERE RE (𝛼) < 0 

 

AS A PARTICULAR CASE OF (1.2.1), WE HAVE  

 

𝑫𝒙 ,𝒒
𝜶 𝒙𝝁−𝟏 =

𝚪𝐪(𝝁)

𝚪𝐪(𝝁 − 𝜶)
𝒙𝝁−𝜶−𝟏                                                                 (𝟏. 𝟐. 𝟐) 

 

 

 

The New Generalization of Generalized M-Series  

Here , first the notation and the definition of the New Generalization of Generalized M-series, introduced by Ahmad 

Faraj , Tariq Salim , Safaa Sadek, Jamal Ismai [5] has been given as  
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                                                                                                                                                                          …(1.3.1) 

Here 0) ( Re  0,) ( Re ,,   C  ,(aj)km, (bj)kn are the pochammer symbols and m,n are non-negative real 

numbers.  

 

MAIN RESULTS 
IN THIS SECTION, WE DRIVE THE RESULTS ON TERM BY TERM Q-FRACTIONAL DIFFERENTIATION OF A POWER 

SERIES. AS PARTICULAR CASE WE WILL THE FRACTIONAL Q-DIFFERENTIATION OF NEW GENERALIZATION OF 

GENERALIZED M-SERIES. 

THEOREM 1: IF THE SERIES (z) 
,

,;,



nmqp
M  converges absolutely for |𝒒| < 𝝆 THEN 

 

𝑫𝒛 ,𝒒
𝝁 {𝒛𝝀−𝟏
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𝑫𝒛 ,𝒒

𝝁
𝑧𝑘+𝜆−1                        (2.1) 

 

Where RE (𝝀) > 𝟎,   RE (𝝁) < 𝟎,   0< |𝒒| < 𝟏 

 

PROOF: STARTING FROM THE LEFT SIDE AND USING EQUATION (1.2.1), WE HAVE 
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=
𝟏

𝚪𝐪(−𝝁)
∫(𝒛 − 𝒚𝒒)−𝝁−𝟏

𝒛
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𝒚𝝀−𝟏
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𝒅(𝒚; 𝒒) 

 

=
𝒛𝝀−𝝁−𝟏

𝚪𝐪(−𝝁)
∫(𝟏 − 𝒕𝒒)−𝝁−𝟏

𝟏

𝟎

𝒛𝝀−𝟏
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𝒅(𝒕; 𝒒)                                     (𝟐. 𝟐) 

NOW THE FOLLOWING OBSERVATION ARE MADE 

 

(𝑖)               
)(
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kmpkm
 converges absolutely and therefore uniformly on domain of 

 x over the region of integration. 
 

(𝑖𝑖)             ∫ |(𝟏 − 𝒕𝒒)−𝝁−𝟏𝒕𝝀−𝟏|
𝟏

𝟎
 𝒅(𝒕; 𝒒)  IS CONVERGENT,  

 

PROVIDED  RE (𝜆) > 0,   RE (𝜇) < 0,   0< |𝑞| < 1 

THEREFORE THE ORDER OF INTEGRATION AND SUMMATION CAN BE INTERCHANGED IN (2.2) TO OBTAIN. 

=
𝒛𝝀−𝝁−𝟏

𝚪𝐪(−𝝁) )(
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∫(𝟏 − 𝐭𝐪)−𝛍−𝟏

𝟏

𝟎

𝐭𝛌+𝐤−𝟏𝐝(𝐭; 𝐪) 
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𝑫𝒛 ,𝒒

𝝁
𝑧(𝑛+𝛾)𝛼−𝛽−1+𝜆−1 

Hence the statement (2.1) is proved.  
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