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ABSTRACT

This paper is devoted to fractional g-derivative of special functions. To begin with

the theorem on term by term g-

fractional differentiation has been derived. Fractional g-differentiation of new generalization of Generalized M-series

has been obtained.
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INTRODUCTION

g-Analogue of Differential Operator
Al-Salam [3], has given the g-analogue of differential operator as

oy = LD

This is an inverse of the g-integral operator defined as

[ roawo =xa-9 ¥ 1)
x k=1

WHEREO < |g] < 1
FRACTIONAL Q-DERIVATIVE OF ORDERa«:
THE FRACTIONAL Q-DERIVATIVE OF ORDER « IS DEFINED AS
1 X
DLW = s | &~ YD -ar SDIA50)
I(—a) J
WHERE RE () < 0

AS A PARTICULAR CASE OF (1.2.1), WE HAVE

D¢ xt1 = —I‘q(u) xh-a-1
A T(u—a)

The New Generalization of Generalized M-Series

(1.1)

(1.2)

(1.2.1)

(1.2.2)

Here , first the notation and the definition of the New Generalization of Generalized M-series, introduced by Ahmad

Faraj, Tarig Salim, Safaa Sadek, Jamal Ismai [5] has been given as

a,B a,f
M (al...,ap;bl,...,bq;z)z M (2),

p.q:m,n p.g;m,n
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a.p © (a ..(a K
M (Z) z( 1)km ( p)km Z
P.:m.n (b )kn (bq)kn r(ak +ﬂ)
(13.1)
Here a, S €C,Re (a) >0, Re () >0 ,(@)km, (b)) are the pochammer symbols and m,n are non-negative real
numbers.

MAIN RESULTS
IN THIS SECTION, WE DRIVE THE RESULTS ON TERM BY TERM Q-FRACTIONAL DIFFERENTIATION OF A POWER
SERIES. AS PARTICULAR CASE WE WILL THE FRACTIONAL Q-DIFFERENTIATION OF NEW GENERALIZATION OF
GENERALIZED M-SERIES.
a.p
THEOREM 1: IF THE SERIES M (Z) converges absolutely for |q| < p THEN
p,q;m,n

13 y S (al)km"'(ap)km Zk
uz,q{z kZ_(;(bl)kn...(bq)kn T(ok + f3) }

Zk+l—1 (21)

_< @)@y L
o (01) i (0g) 0 Tk + B) zq

Where RE(A) >0, RE(w) <0, 0<|q| <1

PROOF: STARTING FROM THE LEFT SIDE AND USING EQUATION (1.2.1), WE HAVE

Dy, {zm i (@ )in---(@p i z }

0 (0)n--(0g), Tk + )

1 (al)km (a )km k
= |-y d(y; q)
Fq(—ﬂ)oJ : “ o (0,) - (b i Tlak+ )
ZA-n-1 = (al)km (a )km Zk
L g : 2.2
q( F)J-( ‘) wo1” Z (b )kn (b )kn F(O(k ﬂ) oo oo

NOwW THE FOLLOWING OBSERVATION ARE MADE

i(al)km“'(ap)km Zk

) converges absolutely and therefore uniformly on domain of
o (D) (By)n Tk +f)
x over the region of integration.
(ii) f01|(1 — tq)_,-1t*"t| d(t; ) 1S CONVERGENT,

PROVIDED RE(1) >0, RE(w) <0, 0<|q| <1
THEREFORE THE ORDER OF INTEGRATION AND SUMMATION CAN BE INTERCHANGED IN (2.2) TO OBTAIN.

_ Zhet 2 (@) kn-++(@p im z*
T Ty(—w o (0 (By)n T(ak+p)

f (1 - tq)_p_s " 1d(t; @)
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© k
_ (al)km"'(ap)km Z B (+y)a-B-1+2-1

B 0 (0 (), T(ak+p) z4q

Hence the statement (2.1) is proved.
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